Geometric Discretization of Lagrangian Mechanics and Field Theories

نویسندگان

  • Ari Stern
  • Jerrold E. Marsden
  • Nawaf Bou-Rabee
  • Marco Castrillón López
  • Roger Don
  • Eitan Grinspun
  • Eva Kanso
  • Melvin Leok
  • Michael Ortiz
  • Houman Owhadi
  • Peter Schröder
  • Yiying Tong
  • Marlis Hochbruck
چکیده

This thesis presents a unified framework for geometric discretization of highly oscillatory mechanics and classical field theories, based on Lagrangian variational principles and discrete differential forms. For highly oscillatory problems in mechanics, we present a variational approach to two families of geometric numerical integrators: implicit-explicit (IMEX) and trigonometric methods. Next, we show how discrete differential forms in spacetime can be used to derive a structurepreserving discretization of Maxwell’s equations, with applications to computational electromagnetics. Finally, we sketch out some future directions in discrete gauge theory, providing foundations based on fiber bundles and Lie groupoids, as well as discussing applications to discrete Riemannian geometry and numerical general relativity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geometric Mechanics, Lagrangian Reduction, and Nonholonomic Systems

This paper surveys selected recent progress in geometric mechanics, focussing on Lagrangian reduction and gives some new applications to nonholonomic systems, that is, mechanical systems with constraints typified by rolling without slipping. Reduction theory for mechanical systems with symmetry has its roots in the classical works in mechanics of Euler, Jacobi, Lagrange, Hamilton, Routh, Poinca...

متن کامل

Unambiguous Formalism for Higher-order Lagrangian Field Theories

The aim of this paper is to propose an unambiguous intrinsic formalism for higher-order field theories which avoids the arbitrariness in the generalization of the conventional description of field theories, and implies the existence of different Cartan forms and Legendre transformations. We propose a differential-geometric setting for the dynamics of a higher-order field theory, based on the Sk...

متن کامل

Euler-Lagrange equations and geometric mechanics on Lie groups with potential

Abstract. Let G be a Banach Lie group modeled on the Banach space, possibly infinite dimensional, E. In this paper first we introduce Euler-Lagrange equations on the Lie group G with potential and right invariant metric. Euler-Lagrange equations are natural extensions of the geodesic equations on manifolds and Lie groups. In the second part, we study the geometry of the mechanical system of a r...

متن کامل

Geometric Hamiltonian Formalism for Reparametrization Invariant Theories with Higher Derivatives

Reparametrization invariant Lagrangian theories with higher derivatives are considered. We investigate the geometric structures behind these theories and construct the Hamiltonian formalism in a geometric way. The Legendre transformation which corresponds to the transition from the Lagrangian formalism to the Hamiltonian formalism is non-trivial in this case. The resulting phase bundle, i.e. th...

متن کامل

Extended Research Statement

My research has focused on developing the mathematical foundations of discrete geometry and mechanics to enable the systematic construction of geometric structure-preserving numerical schemes based on the approach of geometric mechanics, with a view towards obtaining more robust and accurate numerical implementations of feedback and optimal control laws arising from geometric control theory. Th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008